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Network identification

From classical models...

...to dynamic network models
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Network identification
w(t) = G(q)w(t) + R(q)r(t) + H(q)e(t)
Derivation of the predictor - In case of full rank disturbances (H (q) square and invertible)*:

e(t) = H(q)"'[(I — G(q))w(t) — R(q)r(t)]

w(t) = G(q)w(t)+ R(g)r(t) + (H(q) — De(t) + e(t)
= [ H(g)™ (I - G(@))lw(®) + [H(q) *R(@)]r(t) + e(t)
b(tlt — 1) = B{w(t) |[w'~'r'} = [I— H(q)™"(I - G(q))lw(t) + [H(g)""R(@)]r(2)
I — H(q)™ + H(q)"'G(9)lw(t) + H(q)"R(q)r(?)

~ ~~
“output!’ “input’’

* For simplicity we assume G strictly proper TU/e



Network identification

w(t) = G(q)w(t) + R(q)r(t) + H(qg)e(t)
Predictor model:
W(t]t—1;0) = [I—H(q,0) " +H(q,0) " G(q, )lw(t)+H(g,0)"R(q, O)r(?)
This leads to a prediction error:
£(t,6) = H(g,0)'[(I — G(q,0))w(t) — R(g, 0)r(t)

and a prediction error estimator:
1 N-1
o . -
On = arg min —— Z e(t,0)" Qe(t,0) Q>0

t=0

TU/e



Network identification

This is a consistent estimator, under the following conditions:

System is in the model set, S € M

Model set M is globally network identifiable at S

There are no algebraic loops in the network (every loop has a delay)

The present r signals are persistently exciting of a sufficiently high order
(data-informativity)

If disturbances are uncorrelated, i.e. H(q, #) diagonal:
problem decomposed in L MISO problems

TU/e



Network identification — reduced rank

What can we do if the disturbances are not full rank?

i.e. ®,(w) does not have full rank for all w

In large scale networks there may be common sources behind multiple disturbances

This situation is not really treated
in the classical PEM literature

but known in (dynamic) factor analysis!!]

[1] Deistler, Scherrer and Anderson, 2015 TU/e



Network identification — reduced rank

A simple example: 2 nodes disturbed by 1 noise @)
r4 -
e1(t,a) = wi(t) — ari(t) e
eo(t,b) = wa(t) — bra(t) o +

Estimate a” with parameter a by minimizing + Zt . Lei(t, 0)2

but note that using the dependency £1 (¢, a”) = £5(t, b") for the model leads to
81(t, a) = EQ(t, b) & e+ (CLO — CL)T‘l — e+ (bo — b)’l”g

which for per5|stently excitating and independent r signals gives variance-free
estimates & = a° and b = b°.

[1] N. Everitt et al., 2015. TU/e



Network identification — reduced rank

Noise can have dim(e) < dim(v)

Assumption:
{3 ‘full rank’ 1

is a full rank noise

‘ ) _,Up
{3 ‘dependent |

Can be detected from data

i,
H = [Hb

] _____— Hgismonic, i.e. lim,_ oo Hy(2) =1

——— Hj is non-square
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Network identification — reduced rank

Particular spectral factorization result of a stochastic process v with rank p < L and
with (v - - - v,) full rank:

AH*

= H
ith H = He A>0, T=lim Hy(2)
Wi Hb T I ; ’ — z—o0 H1p\Z

such that H and H, are monic, stable and minimum-phase

Consequently: v(t) = ﬁo(q)e(t) _ HO 0 e

| HO—TO I||I%

with [Z“] .= HO(q)~w(t) it follows that Te, (t) — e (t) = 0 for all ¢
b

TU/e
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Network identification — reduced rank
0= |00 = Lot b 1 -Gty - R o))
with the constraint: ['(6)e, (t,0) — ep(t,0) = 0 forall ¢

Weighted least-squares method: discard dependencies in noise:
0" =arg mein Eel'(t,0) Qe(t,0) Q>0

leads to consistent estimates of the network,
under the same conditions as for the full rank case

However: For ML/ minimum variance results we typically would need QQ = [cov(e)]

but cov(e) is not invertible

TU/e
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Network identification

Constrained least-squares method: include the noise constraint:
0* =arg m@in[@ {el(t,0) Q, e4(t,0)} Qo >0

subject to E{Z7 (¢,0)Z(t,0)} = 0
with Z(t,0) :=T1(0)e,(t,0) — ep(t,0)

leads to consistent estimates of the network,
under the same conditions as before

This approach provides Maximum Likelihood Estimates,
through constrained optimization of the log-likelihood function

TU/e
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Network identification

Constraint can be infeasible —> Relax the constraint
0* =argmin E {el(t,0) Qq cu(t,0)} + \E{ZT (t,0)Z(t,0)}

with Z(t,0) :=T'(0)e,(t,0) — ep(t, 0)
and A a tuning parameter

Which is a WLS with parameterized weight  §* =arg mein E {g;{(t, 0) Qx e4(t,0)}

Qo + ALT(O)T(6) —ATT(0)
@A) = AL(6) A

Computationally more attractive

TU/e
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Network identification — simulation example

N = 1000 samples,
100 realizations of data,

o2 =10002 = 10007,

6 parameters in total
Hz(Qa 60) — ;

Gij(q,00) = by'q™" + b5 ¢ }

TU/e
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WLS: () Relaxed \ = 10,
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Network identification

However: methods based on non-convex optimization scale poorly to larger dimensions

Alternatives: Sequential / multi-step methods / weighted nullspace fitting!1-3!

e Estimate a (regularized) high-order ARX model

e Either reconstruct the innovation signal to become a measured input, or
approximate the high-order model with linear techniques

e |terate to find the optimal criterion weighting for optimal variance
To be further developed to arrive at robust algorithms

[1] Galrinho, Rojas and Hjalmarsson, TAC 2019 [3] Fonken et al, IFAC 2020
[2] Weerts et al, SYSID 2018 TU/e
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